Abstract

Acute hypobaric hypoxia (AHH) exposure causes altitude mountain sickness (AMS) and life-threatening high altitude cerebral edema (HACE). Despite decades of research, the role of cerebral blood flow (CBF) changes in the pathophysiology of severe AMS remains unclear. The current study evaluated spatiotemporal responses of CBF associated with HACE in mice during the early stages of ascent to high altitudes. First, mice were exposed to AHH to test their tolerance to increasing altitudes (3000–8000 m). Because of its significant influence on both locomotor activity and rotarod behavior tests in mice, further observations were initiated at an altitude of 6000 m to investigate the specific pathophysiology of AMS. Compared with controls, laser speckle contrast imaging (LSCI) revealed a significant decrease in CBF during the early stage (0.5–24 h) at an altitude of 6000 m that was accompanied by a significant increase in brain water content (BWC). Moreover, observations of brain lipid oxidative damage and oxidative stress during the early stage of AHH exposure revealed DNA and cellular damage in cortical and hippocampal regions. Transcriptome profiling of the hippocampus revealed upregulation of forkhead box transcription factors. Similarly, western blot assays revealed upregulation of FOXO1a, FOXO3a, caspase-3 and Bax, and downregulation of Bcl-2, indicating a temporal influence of AHH on mitochondrial function and neuronal apoptosis. Thus, we found that the pathophysiology of HACE occurred with dynamic CBF changes, which triggered oxidative stress and neuronal damage in the mouse brain after AHH exposure. Our findings provide potential strategies for treatment of AHH in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.