Abstract

We addressed whether dynamic cerebral autoregulation (dCA) is affected in middle cerebral artery (MCA) territory (MCAS) and lacunar ischemic stroke (LS). Blood pressure (MAP) and MCA velocity (V) were measured in 10 patients with large MCAS (National Institutes of Health Stroke score, 17+/-2; mean+/-SEM), in 10 with LS (score, 9+/-1), and in 10 reference subjects. dCA was evaluated in time (delay of the MCA Vmean counter-regulation during changes in MAP) and frequency domains (cross-spectral MCA Vmean-to-MAP phase lead). In reference subjects, latencies for MAP increments (5.3+/-0.5 seconds) and decrements (5.6+/-0.5 seconds) were comparable, and low frequency MCA Vmean-to-MAP phase lead was 56+/-5 and 59+/-5 degrees (left and right hemisphere). In MCAS, these latencies were 4.6+/-0.7 and 5.6+/-0.5 seconds in the nonischemic hemisphere and not detectable in the ischemic hemisphere. In the unaffected hemisphere, phase lead was 61+/-6 degrees versus 26+/-6 degrees on the ischemic side (P<0.05). In LS, no latency and smaller phase lead bilaterally (32+/-6 and 33+/-5 degrees) conformed to globally impaired dCA. In large MCAS infarcts, dynamic cerebral autoregulation was impaired in the affected hemisphere. In LS, dynamic cerebral autoregulation was impaired bilaterally, a finding consistent with the hypothesis of bilateral small vessel disease in patients with lacunar infarcts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call