Abstract
This paper presents a dynamic causal model based upon neural field models of the Amari type. We consider the application of these models to non-invasive data, with a special focus on the mapping from source activity on the cortical surface to a single channel. We introduce a neural field model based upon the canonical microcircuit (CMC), in which neuronal populations are assigned to different cortical layers. We show that DCM can disambiguate between alternative (neural mass and field) models of cortical activity. However, unlike neural mass models, DCM with neural fields can address questions about neuronal microcircuitry and lateral interactions. This is because they are equipped with interlaminar connections and horizontal intra-laminar connections that are patchy in nature. These horizontal or lateral connections can be regarded as connecting macrocolumns with similar feature selectivity. Crucially, the spatial parameters governing horizontal connectivity determine the separation (width) of cortical macrocolumns. Thus we can estimate the width of macro columns, using non-invasive electromagnetic signals. We illustrate this estimation using dynamic causal models of steady-state or ongoing spectral activity measured using magnetoencephalography (MEG) in human visual cortex. Specifically, we revisit the hypothesis that the size of a macrocolumn is a key determinant of neuronal dynamics, particularly the peak gamma frequency. We are able to show a correlation, over subjects, between columnar size and peak gamma frequency — that fits comfortably with established correlations between peak gamma frequency and the size of visual cortex defined retinotopically. We also considered cortical excitability and assessed its relative influence on observed gamma activity. This example highlights the potential utility of dynamic causal modelling and neural fields in providing quantitative characterisations of spatially extended dynamics on the cortical surface — that are parameterised in terms of horizontal connections, implicit in the cortical micro-architecture and its synaptic parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.