Abstract

Recently, pulsed electrolysis has been demonstrated as an emerging electrochemical technique that significantly promotes the performance of various electrocatalysis applications. The ionic nature of aqueous electrolytes implies a likely change in ionic distribution under these alternating potential conditions. However, despite the well-known importance of cations, the impact of pulsed electrolysis on the cation distribution remains unexplored as well as its influences on the performance. Herein, we explore the cation effects on the pulsed electrochemical CO2 reduction (p-CO2RR) using the most widely utilized alkali metal cations, including Li+, Na+, K+, and Cs+. It is discovered that the nature of cations can significantly influence the product ratio of C2+ over C1 (mostly CH4) during p-CO2RR in an order of Li+< Na+< K+< Cs+, much more profoundly than those of static cases. We report direct experimental evidence for the cation enrichment caused by pulsed electrolysis, depending on the radius of the hydrated ions. With further quasi-in situ analysis of the catalyst surface, the cation-promoted Cu dissolution-and-redeposition process was identified; this is found to alter the surface CuxO/Cu ratio during the pulsed process. We demonstrate that both the cation enrichment and the cation-adjusted surface CuxO/Cu composition impact the C2+/C1 ratio through the control of the surface-adsorbed CO population. These results reveal the presence of pulse-induced cation redistribution in emerging pulsed electrolysis techniques and provide a comprehensive understanding of alkali metal cation effects for improving the selectivity of p-CO2RR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.