Abstract
The rapid increasing demand of wireless transmission has incurred mobile broadband to continuously evolve through multiple frequency bands, massive antennas and other multi-stream processing schemes. Together with the improved data transmission rate, the power consumption for multi-carrier transmission and processing is proportionally increasing, which contradicts with the energy efficiency requirements of 5G wireless systems. To meet this challenge, multi carrier power amplifier (MCPA) technology, e.g., to support multiple carriers through a single power amplifier, is widely deployed in practical. With massive carriers required for 5G communication and limited number of carriers supported per MCPA, a natural question to ask is how to map those carriers into multiple MCPAs and whether we shall dynamically adjust this mapping relation. In this paper, we have theoretically formulated the dynamic carrier and MCPA mapping problem to jointly optimize the traditional separated baseband and radio frequency processing. On top of that, we have also proposed a low complexity algorithm that can achieve most of the power saving with affordable computational time, if compared with the optimal exhaustive search based algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.