Abstract
The global COVID-19 pandemic brought considerable public and policy attention to the field of infectious disease modelling. A major hurdle that modellers must overcome, particularly when models are used to develop policy, is quantifying the uncertainty in a model’s predictions. By including the most recent available data in a model, the quality of its predictions can be improved and uncertainties reduced. This paper adapts an existing, large-scale, individual-based COVID-19 model to explore the benefits of updating the model in pseudo-real time. We use Approximate Bayesian Computation (ABC) to dynamically recalibrate the model’s parameter values as new data emerge. ABC offers advantages over alternative calibration methods by providing information about the uncertainty associated with particular parameter values and the resulting COVID-19 predictions through posterior distributions. Analysing such distributions is crucial in fully understanding a model and its outputs. We find that forecasts of future disease infection rates are improved substantially by incorporating up-to-date observations and that the uncertainty in forecasts drops considerably in later simulation windows (as the model is provided with additional data). This is an important outcome because the uncertainty in model predictions is often overlooked when models are used in policy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Scientific reports
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.