Abstract

AbstractThe interest in capsular assemblies such as dynamic organic and coordination cages has blossomed over the last decade. Given their chemical and structural variability, these systems have found applications in diverse fields of research, including energy conversion and storage, catalysis, separation, molecular recognition, and live‐cell imaging. In the exploration of the potential of these discrete architectures, they are increasingly being employed in the formation of more complex systems and smart materials. This Review highlights the most promising pathways to overcome common drawbacks of cage systems (stability, recovery) and discusses the most promising strategies for their hybridization with systems featuring various dimensionalities. Following the description of the most recent advances in the fabrication of zero to three‐dimensional cage‐based systems, this Review will provide the reader with the structure‐dependent relationship between the employed cages and the properties of the materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.