Abstract

With elastic CDNs, content providers can rent cache space on demand at different cloud locations in order to enhance their offered quality of service (QoS). This paper addresses a key challenge in this context, namely how to invest an available budget in cache space in order to match spatio-temporal fluctuations of file demand and storage price. Specifically, we consider jointly dynamic cache rental, file placement, and request-cache association in a wireless scenario in order to provide a just-in-time CDN service. The objective is to maximize the benefit in average download delay obtained by the rented caches, while ensuring that the time-average rental cost is less than a fixed budget. We leverage a Lyapunov drift-minus-benefit technique to transform our infinite horizon problem into day-by-day subproblems which can be solved without knowledge of distant future file popularity and transmission rates. For the case of non-overlapping small cells (also wired case) we provide an efficient subproblem solution, referred to as JCC. However, in the general overlapping case, the subproblem becomes a mixed integer non-linear program (MINLP). In this case, we employ a dual decomposition method to derive a scalable solution, namely the JCCA algorithm. Finally, via extensive simulations, we reveal that the proposed JCCA algorithm attains 82.66 % higher delay benefit than existing static cache storage-based algorithms when available average cache budget is 20% of entire file library; moreover, the benefit becomes higher as the average cache budget gets tighter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call