Abstract

A micro-to-macro analysis is offered to investigate the dynamic response and buckling of metal matrix composite cylindrical shells and plates under cylindrical bending. The micromechanical analysis relies on the elastic fibers and inelastic matrix material properties, and provides the bulk behavior of the metal matrix composite at room and elevated temperatures. The macromechanical analysis employs the classical and higher order plate theories in conjunction with a spatial finite difference and temporal Runge-Kutta integrations to provide the dynamic response of the structure. The effects of the metallic matrix inelasticity, material rate sensitivity, shear deformation, fiber orientation, and initial geometrical imperfection on the behavior of the metal matrix composite structures are studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.