Abstract

The dynamic instability of discrete, elastic, multiple degree of freedom (d.o.f.) systems under a combination of static and step loads is studied. Conservative, autonomous and holonomic systems are considered, in which the associated static response is a bifurcation under one load parameter, and a limit point under the second parameter. A review of different criteria and algorithms obtained from them for the computation of dynamic buckling loads is first presented, followed by a procedure derived from previous investigations on one d.o.f. systems. The different procedures are applied to a two d.o.f. problem under axial and lateral load, with quadratic and cubic non-linearities. The response in time shows that the system oscillates about the static equilibrium position before dynamic buckling is reached, with the kinetic energy tending to zero as assumed in the static (energy) procedures of stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call