Abstract

Computational neuromodeling may help to further our understanding of how empirical neuroimaging findings are generated by underlying neural mechanisms. Here, we used a simple computational model that simulates early visual processing of brightness changes in a dynamic, illusory display. The model accurately predicted illusory brightness changes in a grey area of constant luminance induced by (and in anti-phase to) luminance changes in its surroundings. Moreover, we were able to directly compare these predictions with recently observed fMRI results on the same brightness illusion by projecting predicted activity from our model onto empirically investigated brain regions. This new approach in which generated network activity and measured neuroimaging data are interfaced in a common representational “brain space” can contribute to the integration of computational and experimental neuroscience.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.