Abstract
Face pareidolia is a tendency to seeing faces in nonface images that reflects high tuning to a face scheme. Yet, studies of the brain networks underwriting face pareidolia are scarce. Here, we examined the time course and dynamic topography of gamma oscillatory neuromagnetic activity while administering a task with nonface images resembling a face. Images were presented either with canonical orientation or with display inversion that heavily impedes face pareidolia. At early processing stages, the peaks in gamma activity (40 to 45 Hz) to images either triggering or not face pareidolia originate mainly from the right medioventral and lateral occipital cortices, rostral and caudal cuneus gyri, and medial superior occipital gyrus. Yet, the difference occurred at later processing stages in the high-frequency range of 80 to 85 Hz over a set of the areas constituting the social brain. The findings speak rather for a relatively late neural network playing a key role in face pareidolia. Strikingly, a cutting-edge analysis of brain connectivity unfolding over time reveals mutual feedforward and feedback intra- and interhemispheric communication not only within the social brain but also within the extended large-scale network of down- and upstream regions. In particular, the superior temporal sulcus and insula strongly engage in communication with other brain regions either as signal transmitters or recipients throughout the whole processing of face-pareidolia images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.