Abstract
Psoriasis arises from complex interactions between keratinocytes and immune cells, leading to uncontrolled inflammation, immune hyperactivation, and a perturbed keratinocyte life cycle. Despite the availability of drugs for psoriasis management, the disease remains incurable. Treatment response variability calls for new tools and approaches to comprehend the mechanisms underlying disease development. We present a Boolean multiscale population model that captures the dynamics of cell-specific phenotypes in psoriasis, integrating discrete logical formalism and population dynamics simulations. Through simulations and network analysis, the model predictions suggest that targeting neutrophil activation in conjunction with inhibition of either prostaglandin E2 (PGE2) or STAT3 shows promise comparable to interleukin-17 (IL-17) inhibition, one of the most effective treatment options for moderate and severe cases. Our findings underscore the significance of considering complex intercellular interactions and intracellular signaling in psoriasis and highlight the importance of computational approaches in unraveling complex biological systems for drug target identification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.