Abstract

SummaryThis paper presents a general control architecture for bipedal walking which is based on a divide-and-conquer approach. Based on the architecture, the sagittal-plane motion-control algorithm is formulated using a control approach known as Virtual Model Control. A reinforcment learning algorithm is used to learn the key parameter of the swing leg control task so that speed control can be achieved. The control algorithm is applied to two simulated bipedal robots. The simulation analyses demonstrate that the local speed control mechanism based on the stance ankle is effective in reducing the learning time. The algorithm is also demonstrated to be general in that it is applicable across bipedal robots that have different length and mass parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.