Abstract

Rapidly relaxing components in the decay of the transient electric dichroism of DNA restriction fragments were reported by Diekmann et al. [(1982) Biophys. Chem. 15, 263-270] and Pörschke et al. [(1987) Biopolymers 26, 1971-1974]. These are analyzed using a new normal mode theory for weakly bending rods and assigned to bending. The longest bending relaxation times for fragments with 95-250 base pairs coincide with the theoretical curve calculated for a dynamic bending rigidity corresponding to a dynamic persistence length Pd = 2100 A. Analysis of the relative amplitudes of fast and slow components following weak orienting pulses is also consistent with a rather large dynamic persistence length. The enhancement of the relative amplitude of the fast component in large electric fields is attributed to steady-state bending of initially perpendicular DNAs by the field. Several reasons are proposed why the dynamic bending rigidity is 4 times larger than the apparent static bending rigidity inferred from equilibrium persistence length measurements on the same fragments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.