Abstract
Steel sandwich structures with honeycomb and corrugated cellular cores have demonstrated the capability of supporting significant static bending loads while also enabling effective mitigation of impulse loads, the main objectives to use these structures is weight reduction and isolate or reduce the deflection and stress. This research aims to study the effect of dynamic load on the dynamic properties of various types of sandwich cores then find the best model that withstand high stresses and dissipate loads with less mass was possible. The studied model of sandwich is of dimensions (500x500x100) mm with five cells. Four types of steel sandwich plate (SSP) finite element models of various core types have been created: (1) triangle corrugated core, (2) trapezoid corrugated core, (3) square honeycomb and (4) out-of plane hexagonal honeycomb, the mass of various types was constant with value of 13.75 kg. The SSP types were compared by using ANSYS (15.0) APDL software.The finite element models are examined under the effect of transient concentrated stepped load of (350N) during 10ms. The time history response showed that the minimum von-Mises stress and minimum deflection occur at triangle corrugated SSP with values of stress (12.5Mpa) and deflection (3.8 ), but in energy absorption the square honeycomb is the best type with reduction of stress (99.65%) and reduction of deflection of (98.95%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: THE IRAQI JOURNAL FOR MECHANICAL AND MATERIALS ENGINEERING
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.