Abstract

Understanding the behaviour of active catalyst sites at the atomic level is crucial for optimizing catalytic performance. Here, the evolution of Pt and Cu dopants in Au25 clusters on CeO2 supports is investigated in the water-gas shift (WGS) reaction, using operando XAFS and DRIFTS. Different behaviour is observed for the Cu and Pt dopants during the pretreatment and reaction. The Cu migrates and builds clusters on the support, whereas the Pt creates single-atom active sites on the surface of the cluster, leading to better performance. Doping with both metals induces strong interactions and pretreatment and reaction conditions lead to the growth of the Au clusters, thereby affecting their catalytic behaviour. This highlights importance of understanding the behaviour of atoms at different stages of catalyst evolution. These insights into the atomic dynamics at the different stages are crucial for the precise optimisation of catalysts, which ultimately enables improved catalytic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.