Abstract

Transitional cavity shedding is known as the stage of attached cavitation with high instability and distinct periodicity. In this study, we experimentally investigated the dynamic characteristics of transitional cavity (0.8≤L/c<1) shedding on NACA0015 hydrofoil with high-speed video observation and synchronous pressure measurement. In the partial cavity (0.4<L/c<0.8) oscillation, the sheet cavitation grew along the chord with good spanwise uniformity, and the middle-entrant jet played a dominant role in cavity shedding. Meanwhile, in the transitional cavity oscillation, the previous shedding cavity exhibited a prohibitive effect on the growth of sheet cavitation on the hydrofoil, resulting in concave cavity closure line. Moreover, two symmetrical side-entrant jets originated at the near-wall ends and induced the two-stage shedding phenomenon. The aft and fore parts of the sheet cavitation shed separated as different forms and eventually merged into the large-scale cloud cavity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call