Abstract

Abstract Dynamic buckling-induced delamination of nanofilms on substrates is a universal and essential phenomenon in nanoelectromechanical systems (NEMS). Van der Waals (vdWs) interactions play an important role in the dynamic buckling-induced delamination of nanofilms on substrates due to the interaction distances at nanoscale or even sub-nanoscale in NEMS. Therefore, it is interesting yet challenging to reveal the effect of intermolecular vdWs interactions on dynamic buckling-induced delamination of nanofilms on substrates. By considering sub-nanoscale dynamic boundary effects induced by intermolecular vdWs interactions, a parametric excitation nonlinear vibration model for dynamic buckling-induced delamination of nanofilms partly bonded on substrates is established. Effects of sub-nanoscale vdWs dynamic boundaries on transient and steady-state responses of dynamically delaminated nanofilms on substrates are analyzed. The sub-nanoscale vdWs dynamic boundaries lead the dynamic responses of delaminated-nanofilm/substrate systems very sensitive to initial conditions. The bending and shifting frequency response results demonstrated that the system nonlinearities can be greatly amplified by the sub-nanoscale vdWs dynamic boundary effect. Moreover, the spontaneous symmetry breaking and violent interfacial tearing/healing phenomena can be also triggered in the systems. Based on spontaneous symmetry breaking, a trans-scale relationship between nanofilm equilibrium positions and intermolecular vdWs interactions is established, which can provide a promising route for trans-scale measurements of molecular scale interfacial interactions. The work can also be helpful for the dynamic design of resonant NEMS devices based on nanofilm/substrate systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call