Abstract

A numerical model of the aluminium foam with voronoi cells is built and uni-directionally crushed with various velocities from 1m/s to 110m/s. It is shown that the foam deforms homogeneously within the whole specimen and the stress in the foam increases gradually with the strain without an obvious plateau stage under the low-velocity compression, while the deformation is concentrated within a zone near the impact end and an obvious plateau stage can be found in the stress-strain curves of the foams under the high-velocity crushing. By analyzing the distribution of the density within the foams using the digital image processing technology, the densification strain of the foams under dynamic crushing can be determined. Then combining the foam’s stress-strain curve under the low-velocity compression, the dynamic plateau stress of the foams can be predicted. It is shown that both the densification strain and the plateau stress of the foams under the high-velocity crushing predicted by employing the digital image process technology are in good agreement with the numerical simulations. The results show that both the plateau stress and the densification strain of the foams increase with the impact velocity, which is essentially caused by the localization of the foam’s deformation under dynamic crushing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.