Abstract
A two species commensal symbiosis model with Holling type functional response and the first species subject to Allee effect takes the form $$ \di\frac{dx}{dt}&=&x\Big(a_1-b_1x\Big)\di\frac{x}{\beta +x}+\di\frac{c_1xy^p}{1+y^p}, \di\frac{dy}{dt}&=&y(a_2-b_2y) $$ is investigated, where $a_i, b_i, i=1,2$ $p$, $\beta$ and $c_1$ are all positive constants, $p\geq 1$ is a positive integer. Local and global stability property of the equilibria are investigated. Our study indicates that the unique positive equilibrium is globally stable. Also, the final density of the first species is increasing with the Allee effect, this result differs from that obtained for the Holling type commensal symbiosis model with the second species subject to Allee effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Mathematical Biology and Neuroscience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.