Abstract

The effect of electron irradiation on the dynamic behavior of Fe atoms, embedded into monovacancy (Fe@MV) and divacancy (Fe@DV) defects in graphene, has been investigated using ab initio molecular dynamics. This study reveals the detailed mechanisms of transformation and migration of Fe@MV and Fe@DV defects in graphene recently observed in aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM) experiments [Nano Lett. 2013, 13, 1468]. An important atomic-scale insight into the dynamics of atomic Fe on graphene, unavailable to AC-HRTEM observations, has been provided. It was found that structural changes of the studied defects are induced by electron impacts on carbon atoms bonded to Fe. The threshold energies for ejection of these carbon atoms are significantly lower compared to that in pristine graphene. For electron impacts with the subthreshold transferred energies, migration of the defects and flipping of Fe atoms between different sides of the graphene plane can occur. The st...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.