Abstract

This paper proposes an accurate complete model of a DFIG wind turbine composed of the flexible drive train model, the DFIG, the back-to-back converter, the protection systems, and the control techniques. The simulations use the Matlab/Simulink program to investigate the dynamic behavior of these parts on the 2 MW wind turbine. The simulations show the complete dynamic behavior of electrical and mechanical under normal operation, and voltage sags. Moreover the control logic of an active crowbar protection during high rotor current, and the control logic of a DC-chopper protection during high DC-bus voltage are presented. It can be seen that both protection schemes can limit the current and DC-bus voltage as well as generator torque. The demagnetization control technique also reduces the high transient rotor current and the generator torque during recovery process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.