Abstract

The free vibration (FV) and dynamic stability (DS) analyzes are presented for functionally graded viscoelastic plates (FGVPs) under compressive load and resting on elastic foundations (EFs). Winkler elastic foundation models and Pasternak elastic foundation models are used as elastic foundations. The basic equations of FGVPs interacting with EFs are derived using the concepts of Boltzmann and Volterra. An analytical method for studying the DS and FV of FGVPs interacting with EFs is developed using the integro-differential equations. To solve the current problem, Galerkin and Laplace methods are used. A technique for the analysis of DS and FV of FGVPs on the EFs is developed. To confirm the proposed formulation, the results are compared with other available solutions. Finally, the influences of EFs, volume fractions and rheological constants on the critical times and frequencies depending on the geometrical characteristics and loading parameters are examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.