Abstract

Machining accuracy and productivity of the grinding process can be mainly affected by the dynamic behavior of the different components participating in grinding process, e.g. grinding wheel, grinding machine and workpiece. Amongst others, design and material of the grinding wheels play a significant role in grinding performance. Therefore, controlling the dynamic behavior of the grinding wheel through an in-process monitoring and a post-process measurement seems an appropriate approach to optimize the grinding process, especially in high efficiency deep grinding (HEDG). This paper presents the results of the grinding tests, which were conducted using two different vitrified bonded CBN wheels — one with Carbon fiber-reinforced polymer (CFRP) hub body and other one with steel hub body. The experiments have been carried out using a new in-process measurement system which allows the detection of the wheel vibration amplitudes and frequencies in different location of the wheel body during grinding. It was proved that the dynamic behavior of grinding wheels can affect the chip removal mechanism. The experimental investigation showed that grinding parameters and coolant supply conditions in HEDG process can affect the dynamic behavior of the grindings wheels. Furthermore, using CFRP as the hub material leads to a reduction in the wheel vibration and generated amplitudes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.