Abstract

Clobazam, a 1,5-benzodiazepin-2,4-dione, is a chiral molecule because its ground state conformation features a nonplanar seven-membered ring lacking reflection symmetry elements. The two conformational enantiomers of clobazam interconvert at room temperature by a simple ring-flipping process. Variable temperature HPLC on the Pirkle type (R)-N-(3,5-dinitronenzoyl)phenylglycine and (R,R)-Whelk-O1 chiral stationary phases (CSPs) allowed us to separate for the first time the conformational enantiomers of clobazam and to observe peak coalescence-decoalescence phenomena due to concomitant separation and interconversion processes occurring on the same time scale. Clobazam showed temperature dependent dynamic high-performance liquid chromatography (HPLC) profiles with interconversion plateaus on the two CSPs indicative of on-column enantiomer interconversion. (enantiomerization) in the column temperature range between Tcol = 10°C and Tcol = 30°C, whereas on-column interconversion was absent at temperature close to or lower than Tcol = 5°C. Computer simulation of exchange-deformed HPLC profiles using a program based on the stochastic model yielded the apparent rate constants for the on-column enantiomerization and the corresponding free energy activation barriers. At Tcol = 20°C the averaged enantiomerization barriers, ΔG(‡), for clobazam were found in the range 21.08-21.53 kcal mol(-1) on the two CSPs. The experimental dynamic chromatograms and the corresponding interconversion barriers reported in this article are consistent with the literature data measured by DNMR at higher temperatures and in different solvents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.