Abstract
This paper is intended to study the dynamic oscillatory behavior of chloride ion inside electrically charged open carbon nanocones (CNCs) using the molecular dynamics (MD) simulations. The small and wide ends of nanocone are assumed to be identically and uniformly charged with positive electric charges. In the simulation, the Tersoff-Brenner (TB) and the Lennard-Jones (LJ) potential functions are employed to evaluate the interatomic interactions between carbon atoms and the van der Waals (vdW) interactions between the ion and the nanocone, respectively. The Coulomb potential is also adopted to evaluate the electrostatic interactions between the ion and the electric charges distributed at both ends of nanocone. Numerical results are presented to examine the effects of magnitude of electric charges, initial separation distance and initial velocity on the mechanical oscillatory behavior of system and the obtained results are also compared with the ones related to an uncharged nanocone. It is found that operating frequency as well as escape velocity enhance considerably as a result of electrostatic interactions. It is further found that regardless of the value of electric charges, optimal oscillation frequency is achievable when no initial velocity is imposed on the ion initially located inside of nanocone with an offset of 2 Å from its small end.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.