Abstract

Boron carbide displays a rich response to dynamic compression that is not well understood. To address poorly understood aspects of behavior, including dynamic strength and the possibility of phase transformations, a series of plate impact experiments was performed that also included reshock and release configurations. Hugoniot data were obtained from the elastic limit (15–18 GPa) to 70 GPa and were found to agree reasonably well with the somewhat limited data in the literature. Using the Hugoniot data, as well as the reshock and release data, the possibility of the existence of one or more phase transitions was examined. There is tantalizing evidence, but at this time no phase transition can be conclusively demonstrated. However, the experimental data are consistent with a phase transition at a shock stress of about 40 GPa, though the volume change associated with it would have to be small. The reshock and release experiments also provide estimates of the shear stress and strength in the shocked state as well as a dynamic mean stress curve for the material. The material supports only a small shear stress in the shocked (Hugoniot) state, but it can support a much larger shear stress when loaded or unloaded from the shocked state. This strength in the shocked state is initially lower than the strength at the elastic limit but increases with pressure to about the same level. Also, the dynamic mean–stress curve estimated from reshock and release differs significantly from the hydrostate constructed from low-pressure data. Finally, a spatially resolved interferometer was used to directly measure spatial variations in particle velocity during the shock event. These spatially resolved measurements are consistent with previous work and suggest a nonuniform failure mode occurring in the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.