Abstract
Important characteristics of a zero-group velocity (ZGV) mode in a standard rail are investigated through numerical simulation and experiment. First, the semi-analytical finite element analysis is implemented to compute dispersion curves for the rail structure and the first ZGV point is identified. Backward waves are identified through opposing senses of group and phase velocities. Next, a time-dependent finite element model is used to understand the dynamic response of the rail. Finally, experimental measurements confirm that ZGV modes in rail structures are formed through interferences between two opposite-traveling waves, which is analogous to the S1-S2b ZGV Lamb mode in plate structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.