Abstract

In this paper, a mathematical model is developed to study the behavior of thermal energy storage (TES) under operation in the particular case of Adiabatic Compressed Air Energy Storage (A CAES). The A CAES consists of storing the available extra electrical energy of the electricity network in a form of compressed air (in a cavern) to discharge it during peak periods. The TES sub-system is used to charge and discharge the corresponding heat of compression, leading to a quasi adiabatic mode and an increase in the overall electricity storage efficiency (roughly from 50 to 70%) compared to diabatic CAES. The mathematical model has been converted into a computer simulation program with all the effective parameters of heat transfer in the storage reservoir. This model used to define a geometry reservoir able of storing a given power and restore it while maintaining a required temperature level at the output of unit. The influence of the input and output parameters on the storage efficiency is studied. The results illustrate the behavior of the storage reservoir under dynamic mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.