Abstract

In the predator–prey system, predators can affect the prey population by direct killing and predation fear. In the present study, we consider a delayed predator–prey model with fear and Beddington–DeAngelis functional response. The model incorporates not only the fear of predator on prey with an intraspecific competition relationship, but also fear delay and pregnancy delay. Apart from the local stability analysis of the equilibrium points of the model, we find that time delay can change the stability of the system and cause Hopf bifurcation. Taking time delay as the bifurcation parameter, the critical values of delays in several cases are derived. In addition, we extend it to the random environment and study the stochastic ultimate boundedness of the stochastic process. Finally, our theoretical results are validated by numerical simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call