Abstract

The dynamic behavior of a nematic liquid crystal with added carbon nanotubes (CNTs) in an electric field was analyzed. A theoretical model based on elastic continuum theory was developed and the relaxation times of nematic liquid crystals with CNTs were evaluated. Experiments made with single-walled carbon nanotubes dispersed in nematic 4-cyano-4’-pentylbiphenyl (5CB) indicated a significant difference of the relaxation time when compared to pure liquid crystal. We also noticed that the relaxation time when the field is switched off depends on how long the field was applied. It is shorter when the field is switched off immediately after application and longer when the field was applied for at least one hour.

Highlights

  • The increased interest for nanomaterials in different domains such as chemistry, medicine or engineering, makes their characterization quite necessary

  • The experiments were performed on a 0.1% volumetric fraction of single-walled carbon nanotubes (SWCNTs) in 4-cyano-4’-pentylbiphenyl (5CB) liquid crystal (LC)

  • When a liquid crystal with positive dielectric anisotropy is exposed to an external electric field higher than the critical Fréedericksz transition threshold, its molecules have a tendency to orient their director parallel to the applied field, deviating by an angle θ from their initial direction (Figure 1)

Read more

Summary

Introduction

The increased interest for nanomaterials in different domains such as chemistry, medicine or engineering, makes their characterization quite necessary This might be the reason why there are so many research papers presenting new materials and new experiments regarding their behavior in different external electric, magnetic or laser fields [1,2,3,4,5,6,7,8]. Under the action of an external magnetic or electric field above a critical threshold, nematic molecules collectively change their orientation This is called the Fréedericksz transition [15,16] and the molecular movement is characterized by the relaxation time. The experiments were performed on a 0.1% volumetric fraction of single-walled carbon nanotubes (SWCNTs) in 4-cyano-4’-pentylbiphenyl (5CB) liquid crystal (LC)

Theoretical Background
Conclusion
Findings
License and Terms

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.