Abstract

This paper studies the behavior of S2-glass woven fabric reinforced polymer composite under low-velocity impact at 18–110 J energy. A macro-homogeneous finite element model for the prediction of their response is implemented, considering the non-linear material behavior and intralaminar and interlaminar failure modes for the prediction of impact damage. The model accurately predicted the permanent indentation caused by impact. By applying the Ramberg-Osgood formulation, different initial stiffness values are examined to assess the post-impact unloading response. This approach reveals the significant role of initial stiffness in inelastic strain accumulation and its consequent effect on permanent indentation depth. A higher initial stiffness correlates with increased inelastic strain, influencing the impactor rebound and resulting in greater permanent indentation. By accurately predicting permanent indentation, and damage accumulation for different impact energies, this study contributes to a better understanding of the impact behavior of composite materials, thereby promoting their wider application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.