Abstract
Investigating soil organic matter's (SOM) microscale assembly and functionality is challenging due to its complexity. This study constructs comparatively realistic SOM models, including diverse components such as Leonardite humic acid (LHA), lipids, peptides, carbohydrates, and lignin, to unveil their spontaneous self-assembly behavior at the mesoscopic scale through microsecond coarse-grained molecular dynamics simulations. We discovered an ordered SOM aggregation creating a layered phase from its hydrophobic core to the aqueous phase, resulting in an increasing O/C ratio and declining structural amphiphilicity. Notably, the amphiphilic lipids formed a bilayer membrane, partnering with lignin to constitute SOM's hydrophobic core. LHA, despite forming a layer, was embedded within this structure. The formation of such complex architectures was driven by nonbonded interactions between components. Our analysis revealed component-dependent diffusion effects within the SOM system. Lipids, peptides, and lignin showed inhibitory effects on self-diffusion, while carbohydrates facilitated diffusion. This study offers novel insights into the dynamic behavior and assembly of SOM components, introducing an effective approach for studying dynamic SOM mechanisms in aquatic environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.