Abstract

In the biped robotics domain, head oscillations may be extremely harmful, especially if the robot is teleoperated, since vibrations strongly reduce the operator’s spatial awareness. In particular, undesired head oscillations occur in under-actuated robots, where springs and passive mechanisms are used to achieve a human-like motion. This paper proposes an approach to reduce the vibrations of a biped robot’s head; the proposed solution does not affect the dynamic locomotion properties, on which specific control logic could have been already tuned. The approach is tested on Rollo, a flexible-biped-wheeled robot, whose head vibrates throughout the robot locomotion. The two requirements, i.e., head vibration reduction and unchanged Rollo locomotion properties, are traduced in constraints to the robot possible modifications. Based on a 1D finite element model of the robot, tuned on experimental modal analysis, the undesired vibration causes are detected, and a solution for their reduction is proposed. Rollo’s head vibration amplitude is attenuated using a tuned vibration absorber, which achieves impressive performance in the robot. An archetype of the proposed vibration absorber is tailored designed on Rollo, without invasive changes to the robot structure. The proposed approach solves a significant problem in the biped robotic research community. The approach used to reduce the Rollo head oscillations may be utilized in other biped robot machines with or without flexible legs.

Highlights

  • Robotics is a multidisciplinary research field, increasingly present in nowadays daily life

  • This paper proposes an approach to reduce the vibrations of a biped robot’s head; the proposed solution does not affect the dynamic locomotion properties, on which specific control logic could have been already tuned

  • The driving torques provided by the motors were simplified and substituted by the equivalent alternating horizontal force applied at the wheels center

Read more

Summary

Introduction

Robotics is a multidisciplinary research field, increasingly present in nowadays daily life. Robotics is modifying the classical design concepts, joining mechanics, electronics, and computer science knowledge, including life science considerations, resulting in the design of novel systems, which actively interact with the environment [1,2,3]. The design of such systems is innovative and includes many more aspects than classical systems design, e.g., variable stiffness actuators, soft robotics, dielectric elastomer actuators, artificial skins. Humanoid robotics is a novel research branch [4], oriented to conceive systems with human-like behaviour. The design of a machine, emulating the complexity of the human body and mind, is a big step to pursue; many systems are conceived to reduce the gaps between human and humanoid robots [5,6,7]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.