Abstract

The axle forces applied by a vehicle through its wheels are a critical part of the interaction between vehicles, pavements and bridges. Therefore, the minimisation of these forces is important in order to promote long pavement life spans and ensure that bridge loads are small. Moreover, as the road surface roughness affects the vehicle dynamic forces, the monitoring of pavements for highways and bridges is an important task. This paper presents a novel algorithm to identify these dynamic interaction forces which involves direct instrumentation of a vehicle with accelerometers. The ability of this approach to predict the pavement roughness is also presented. Moving force identification theory is applied to a vehicle model in theoretical simulations in order to obtain the interaction forces and pavement roughness from the measured accelerations. The method is tested for a range of bridge spans in simulations and the influence of road roughness level on the accuracy of the results is investigated. Finally, the challenge for the real-world problem is addressed in a laboratory experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call