Abstract

Electric power distribution systems of many commercial and industrial sites often employ variable frequency drives and other loads that internally utilize dc. Such loads are often based on front-end line-commutated rectifiers. The detailed switch-level models of such rectifier systems can be readily implemented using a number of widely available digital programs and transient simulation tools, including the Electromagnetic Transient (EMT)-based programs and Matlab/Simulink. To improve the simulation efficiency for the system-level transient studies with a large number of such subsystems, the so-called dynamic average models have been utilized. This paper presents the average-value modeling methodologies for the conventional three-phase (six-pulse) front-end rectifier loads. We demonstrate the system operation and the dynamic performance of the developed average models in discontinuous and continuous modes, as well as under balanced and unbalanced operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.