Abstract

This paper applies the Rudnick and Milton method through the dynamic evaluation of the probability of airborne contagion, redefining all parameters and variables in discretized form. To adapt the calculation of the risk of contagion to real needs, scenarios are used to define the presence of people, infected subjects, the hourly production of the quanta of infection, and the calculation of the concentration of CO2 produced by exhalation in the air. Three case studies are discussed: a school, an office, a commercial activity. Complex scenarios include environmental sanitization, a variable number of people, and the possibility of simulating work shifts. The dynamic evaluation of the quanta of infection is also estimated, not foreseen by the Rudnick and Milton model, and involves updating the average values of the equivalent fraction of the indoor air with an improvement in the accuracy of the calculation due to the reduction of improper peaks of the stationary variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.