Abstract
ABSTRACTComplete ionic conductivity spectra have been taken of solid silver chloride and silver bromide at various temperatures. The spectra contain two new dynamic features: i) a thermally activated Debye-type relaxation which is explained by the frequent hopping of silver ions from their regular lattice sites to adjacent interstial sites and back again, and ii) conductivity maxima at about 500 GHz which are attributed to high-amplitude individual vibrational motions, mostly of the silver ions. – We also report results of a neutron scattering study on silver bromide. These contain thermally activated quasielastic contributions caused by the localized cation back-and-forth hopping and also give evidence of fast correlated movements of neighboring ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.