Abstract

This paper presents a recently developed theory of colloid dynamics as an alternative approach to the description of phenomena of dynamic arrest in monodisperse colloidal systems. Such theory, referred to as the self-consistent generalized Langevin equation (SCGLE) theory, was devised to describe the tracer and collective diffusion properties of colloidal dispersions in the short- and intermediate-time regimes. Its self-consistent character, however, introduces a nonlinear dynamic feedback, leading to the prediction of dynamic arrest in these systems, similar to that exhibited by the well-established mode coupling theory of the ideal glass transition. The full numerical solution of this self-consistent theory provides in principle a route to the location of the fluid-glass transition in the space of macroscopic parameters of the system, given the interparticle forces (i.e., a nonequilibrium analog of the statistical-thermodynamic prediction of an equilibrium phase diagram). In this paper we focus on the derivation from the same self-consistent theory of the more straightforward route to the location of the fluid-glass transition boundary, consisting of the equation for the nonergodic parameters, whose nonzero values are the signature of the glass state. This allows us to decide if a system, at given macroscopic conditions, is in an ergodic or in a dynamically arrested state, given the microscopic interactions, which enter only through the static structure factor. We present a selection of results that illustrate the concrete application of our theory to model colloidal systems. This involves the comparison of the predictions of our theory with available experimental data for the nonergodic parameters of model dispersions with hard-sphere and with screened Coulomb interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.