Abstract

ABSTRACTThe geometry, origin, and diffusion along hairpin defects in Si were investigated using TEM and SIMS techniques. The defect that grows from the amorphous-crystalline (a/c) interface following solid phase epitaxy growth front was found to be a perfect dislocation with a/2(101) Burgers vector. Misoriented microcrystallites within the a/c transition region are proposed to be nucleation sites for the hairpin dislocations. The density of the crystallites increases with an overall coarsening of the interface which occurs during dynamic annealing processes stimulated by implantation or post-implantation low temperature annealing. Hairpin dislocations were found to pipe-diffuse boron at much higher rates than bulk processes significantly shifting dopant profiles. The diffusion coefficient of boron pipe diffusion at 1150°C was found to be about 104 times higher than the bulk one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.