Abstract

Industrial robots (IRs) are the important driving force to enable the production activities more automotive and highly efficient in modern manufacturing systems. However, in order to realize the effective employment and intelligent configuration of IRs in cloud manufacturing environment, it is required that the sustainable manufacturing capabilities of IRs can be described in a unified and formal manner. In this paper, a unified sustainable manufacturing capability (SMC) of the IR model is constructed in terms of functional attributes, structural information, activities and process condition. A hybrid logic description method integrating Ontology Web Language with dynamic description logic (DLL) is adopted to provide a semantical representation to both the static and dynamic characteristics of SMC. An interval-state description method is proposed to present energy consumption during the IR’s process in sections. Based on the constructed model, three types of rules are defined to reason the capability of IRs, including stability, energy consumption and production capacity. Finally, a cloud-based prototype system architecture is illustrated. An IR service platform is developed and implemented to verify the proposed model and the defined rules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call