Abstract
The physical behavior of glass-forming liquids presents complex features of both dynamic and thermodynamic nature. Some studies indicate the presence of thermodynamic anomalies and of crossovers in the dynamic properties, but their origin and degree of universality is difficult to assess. Moreover, conventional simulations are barely able to cover the range of temperatures at which these crossovers usually occur. To address these issues, we simulate the Kob-Andersen Lennard-Jones mixture using efficient protocols based on multi-CPU and multi-GPU parallel tempering. Our setup enables us to probe the thermodynamics and dynamics of the liquid at equilibrium well below the critical temperature of the mode-coupling theory, [Formula: see text]. We find that below [Formula: see text] the analysis is hampered by partial crystallization of the metastable liquid, which nucleates extended regions populated by large particles arranged in an fcc structure. By filtering out crystalline samples, we reveal that the specific heat grows in a regular manner down to [Formula: see text] . Possible thermodynamic anomalies suggested by previous studies can thus occur only in a region of the phase diagram where the system is highly metastable. Using the equilibrium configurations obtained from the parallel tempering simulations, we perform molecular dynamics and Monte Carlo simulations to probe the equilibrium dynamics down to [Formula: see text]. A temperature-derivative analysis of the relaxation time and diffusion data allows us to assess different dynamic scenarios around [Formula: see text]. Hints of a dynamic crossover come from analysis of the four-point dynamic susceptibility. Finally, we discuss possible future numerical strategies to clarify the nature of crossover phenomena in glass-forming liquids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.