Abstract

Existing review-based recommendation methods learn a latent representation of user and item from user-generated reviews by a static strategy, which are unable to capture the dynamic evolution of users' interests and the dynamic attraction of items. Here, we propose a dynamic and static representation learning network (DSRLN) to improve the rating prediction accuracy by exploring fine-grained representations of users and items. Specifically, we built DSRLN with a dynamic representation extractor to model the dynamic evolution of users' interests by exploring the inner relations of an interaction sequence, and with a static representation extractor to model the users' intrinsic preferences by learning the semantic coherence and feature strength information from reviews. To identify the different influences of dynamic and static features for different users, a personalized adaptive fusion module was designed using a weighted attention mechanism. Extensive experiments on five real-world datasets from Amazon demonstrated the superiority of the proposed model, and the additional ablation studies verified the effectiveness of the components designed in the DSRLN model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.