Abstract
We investigated the static structures and dynamic behaviors for guest molecules (CH4 and CO2) in small and large cavities which are composed of 20 and 24 water molecules, respectively, by B3LYP/6-311++G(d,p) level calculations in GAUSSIAN 09, and using quantum molecular dynamics (QMD) (NVT MD with semiempirical MO PM3 method). For the static calculations, the guest CO2 and CH4 molecules are around at the center of small and large cavities with weak H-bond formations of HOH⋯O2C and H2O⋯H4C van der Waals interaction systems. Calculated carbon NMR chemical shifts of the CH4 in the gas-state and in the small and large cavities reflected the C-13 experimental tendency, while the calculated carbon NMR chemical shifts of the CO2 in the three states almost correspond to the experimental value in the gas-state. For QMD calculations, we used a cluster model containing 73 water molecules, and examined dynamic behavior of guest molecules in the shell cluster model of 39 water molecules which own small and large cavities. The dynamic behavior of guest molecules are simulated from the trajectory distribution of molecular center of the mass due to the translational motion, and also analyzed using librational motions of guest molecules in the cavities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.