Abstract
A large body of recent work suggests that neural representations in prefrontal cortex (PFC) are changing over time to adapt to task demands. However, it remains unclear whether and how such dynamic coding schemes depend on the encoded variable and are influenced by anatomical constraints. Using a cued attention task and multivariate classification methods, we show that neuronal ensembles in PFC encode and retain in working memory spatial and color attentional instructions in an anatomically specific manner. Spatial instructions could be decoded both from the frontal eye field (FEF) and the ventrolateral PFC (vlPFC) population, albeit more robustly from FEF, whereas color instructions were decoded more robustly from vlPFC. Decoding spatial and color information from vlPFC activity in the high-dimensional state space indicated stronger dynamics for color, across the cue presentation and memory periods. The change in the color code was largely due to rapid changes in the network state during the transition to the delay period. However, we found that dynamic vlPFC activity contained time-invariant color information within a low-dimensional subspace of neural activity that allowed for stable decoding of color across time. Furthermore, spatial attention influenced decoding of stimuli features profoundly in vlPFC, but less so in visual area V4. Overall, our results suggest that dynamic population coding of attentional instructions within PFC is shaped by anatomical constraints and can coexist with stable subspace coding that allows time-invariant decoding of information about the future target.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.