Abstract

N6 -methyladenosine (m6 A) is the most abundant internal chemical modification in eukaryotic messenger RNAs (mRNAs). The discovery in 2011 that m6 A is reversed by the fat mass and obesity-associated protein stimulated extensive worldwide research efforts on the regulatory biological functions of dynamic m6 A and other RNA modifications. The epitranscriptomic mark m6 A is written, read, and erased through the activities of a complicated network of enzymes and other proteins. m6 A-binding proteins read m6 A marks and transduce their downstream regulatory effects by altering RNA metabolic processes. In this review, we summarize the current knowledge of m6 A modifications, with particular focus on the functions of its writer, eraser, and reader proteins in posttranscriptional gene regulation and discuss the impact of m6 A marks on human health. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.