Abstract

An approach to achieving dynamic and reversible decoration of DNA-based scaffolds is demonstrated here. To do this, rationally engineered DNA tiles containing enzyme-responsive strands covalently conjugated to different molecular labels are employed. These strands are designed to be recognized and degraded by specific enzymes (i.e., Ribonuclease H, RNase H, or Uracil DNA Glycosylase, UDG) inducing their spontaneous de-hybridization from the assembled tile and replacement by a new strand conjugated to a different label. Multiple enzyme-responsive strands that specifically respond to different enzymes allow for dynamic, orthogonal, and reversible decoration of the DNA structures. As a proof-of-principle of the strategy, the possibility to orthogonally control the distribution of different labels (i.e., fluorophores and small molecules) on the same scaffold without crosstalk is demonstrated. By doing so, DNA scaffolds that display different antibody recognition patterns are obtained. The approach offers the possibility to control the decoration of higher-order supramolecular assemblies (including origami) with several functional moieties to achieve functional biomaterials with improved adaptability, precision, and sensing capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.