Abstract

The experiment of dynamic and quantitative phase-contrast imaging of living cells in simulated zero gravity environment were performed by using digital holographic microscopy (DHM) combined with a superconducting magnet (SM). The SM with large gradient high magnetic field was used to simulate zero gravity by levitating biological living samples. The proposed DHM system provided highly efficient and versatile means for dynamically and quantitatively phase-contrast imaging MC3T3-E1 cells. To our knowledge, the phase images of living cells undergoing modifications and division under simulated zero gravity were firstly obtained by using DHM-SM prototype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.