Abstract

The transient receptor potential vanilloid 1 and 4 genes (trpv1, trpv4) encode temperature-sensitive cation channels hypothesized to mediate thermoresponses in mammalian cells. Although such channels were shown to participate in the peripheral detection of ambient temperature, the specific roles of these channels in central thermosensory neurons remain unclear. Here we report that the membrane potential and excitability of mouse magnocellular neurosecretory cells (MNCs) maintained at physiological temperature were lowered in an additive manner upon pharmacological blockade, or genetic deletion, of trpv1 and trpv4. However extracellular recordings from spontaneously active MNCs in situ showed that blockade or genetic deletion of trpv4 does not interfere with thermally induced changes in action potential firing, whereas loss of trpv1 abolished this phenotype. These findings indicate that channels encoded by trpv4 play a permissive role that contributes to basal electrical activity, but that trpv1 plays a dynamic role that is required for physiological thermosensation by MNCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.